Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells.
نویسندگان
چکیده
The conventional in vitro assays for genotoxicity assessment of chemicals are characterised by a high false-positive rate, thus failing to correctly predict their in vivo genotoxic effects. This study aimed to identify the cellular mechanisms induced by the false-positive genotoxins quercetin, 8-Hydroxyquinoline and 17-beta oestradiol in comparison to true genotoxins and non-genotoxins, by combining in vitro phenotypic parameters with transcriptomics data from HepG2 cells. The effects of these compounds on the phosphorylation of H2AX, cell cycle distribution and whole genome gene expression following treatment for 12, 24 and 48 h were compared with the effects of true genotoxins [benzo[a]pyrene and aflatoxin B1] and non-genotoxins (2,3,7,8-tetrachlorodibenzodioxin, cyclosporin A and ampicillin C). Quercetin induced similar phenotypic effects as true genotoxins and to some extent similar gene expression alterations. Different gene expression changes were also observed, including the up-regulation of DNA repair-related genes. 8-Hydroxyquinoline and 17-beta oestradiol showed no similarities to the true genotoxins at both the phenotypic and the transcriptomic level. In a classification approach, classifiers were selected to discriminate between genotoxins and non-genotoxins. Subsequent analysis for the false-positive compounds showed quercetin to be predicted as genotoxic and 8-hydroxyquinoline and 17-beta oestradiol as non-genotoxic. Our results support that transcriptomics analysis of compound effects in HepG2 leads to similar results with phenotypic analysis and provides additional mechanistic information. Therefore, combined evaluation of gene expression alterations and relevant functional end points using HepG2 cells may contribute to the better understanding of modes-of-action of chemicals and the correct evaluation of their genotoxic properties.
منابع مشابه
A micromethod for the in vitro micronucleus assay.
A micromethod for the in vitro micronucleus assay was developed using L5178Y cells to enable the rapid screening of a large number of molecules. The method is quick, simple to perform and needs very small amounts of compound, i.e. <10 mg. In this methodology, three types of treatment were carried out in parallel, enabling an optimal detection of both aneugenic and clastogenic compounds: two tre...
متن کاملDiscrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling.
Two general mechanisms are implicated in chemical carcinogenesis. The first involves direct damage to DNA, referred to as genotoxic (GTX), to which the cell responds by repair of the damages, arrest of the cell cycle or induction of apoptosis. The second is non-DNA damaging, non-genotoxic (NGTX), in which a wide variety of cellular processes may be involved. Therefore, it can be hypothesized th...
متن کاملBacterial Genotoxins: Merging the DNA Damage Response into Infection Biology
Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence) or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending tox...
متن کاملEffects of oleic acid, docosahexaenoic acid and eicosapentaenoic acid on background and genotoxin-induced frequencies of SCEs in Indian muntjac fibroblasts.
Muntjac cells were cultured at 5 X 10(5) cells/10 cm Petri dish for 24 h prior to addition of fatty acids (50 microM) which were delivered to the cells complexed with 2% bovine serum albumin (fatty acid-free) and incubated for a further 24 h. Parallel dishes were processed for lipid extraction and GC analysis. This analysis showed highly significant (P < 0.01) uptake by the cells of each fatty ...
متن کاملGenotoxicity is a word in genetics defined as a destructive effect on a cell's genetic material (DNA, RNA) affecting its integrity
Genotoxicity is a word in genetics defined as a destructive effect on a cell's genetic material (DNA, RNA) affecting its integrity. Genotoxins are mutagens; they can cause mutations. Genotoxins include both radiation and chemical genotoxins. A substance that has the property of genotoxicity is known as a genotoxin. There are three primary effects that genotoxins can have on organisms by affecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mutagenesis
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2011